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Abstract: In this paper we propose the concepts about homogeneous and heterogeneous target. The homogeneous
target is defined as one that hitting the different position of a target causes the same effect, whereas the heteroge-
neous target is allowed to differ. The large body of work on stochastic duels studied the homogeneous target. But,
in many cases, it is unrealistic to assume that a target is homogeneous. We consider the heterogeneous target in this
study, and obtain the probability density function of the time to kill. The general solution is obtained in quadrature
form and specific solutions are derived for some particular cases. It is illustrated by an example with particular
heterogeneous target.
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1 Introduction
The stochastic duel problem has been studied exten-
sively in the past. Ancker [1] studied the fundamen-
tal one-on-one stochastic duel model, and provided an
excellent review of such model. The general two-on-
one stochastic duel model was considered by Gafar-
ian and Ancker [2]. They obtained the general so-
lution for the duel state probabilities, and from these
derived the two sides winning probabilities. Gafar-
ian and Manion [3] solved the two-on-two stochas-
tic duel model. The state probabilities for three-on-
two stochastic duel were derived by Hong [4]. Fried-
man [5] and Kikuta [6] considered the many-on-one
stochastic duel model. They have obtained an op-
timal firing policy for the single unit side. Subse-
quently, Kress [7] investigated the general many-on-
one stochastic duel conditioned on the order in which
targets are attacked. The solution technique for small-
to moderate-size firefights has been generalized to
solve the general m-on-n stochastic duel model by
Parkhideh [8]. Unfortunately, this solution has strong
exponential computation time. Yang and Gafarian [9]
discussed the computation time of combat statistics in
detail.

Markovian property is a common feature of many
real world situations. Markovian theory has been used
in many field [10, 11, 12]. Adopting a Markovian an-
alytic approach, Koopman [13] addressed the logical

basis of combat modeling and provided an example
involving a detection and destruction duel. Wand et
al. [14] revisited the one-on-one stochastic duel model
and took explicit account of detection in their model.
In their scenario envisaged, the defender detects the
attacker after some random time interval, while the
attacker detects the defenders firing signature with
some fixed probability after each shot. McNaught
[15] considered the Markovian models of three-on-
one stochastic duel involving a hidden defender. In
his models, the defender detects the exposed attacking
group after an exponentially distributed time interval,
while each attacker has a fixed probability of detect-
ing the defender via the flash signature produced after
each shot fired by him. Liu [16] applied the theory
of one-on-one stochastic duel to guerrilla war, and de-
rived the winning probabilities for the both sides.

Although much work has been done for the
stochastic duel problem, an important issue was not
mentioned in literature and deserves more consider-
ations. Two sides conduct a duel. Each member on
one side is referred to as target by anyone else on his
opposing side. The targets were supposed to be ho-
mogeneous in literature. The homogeneous target is
defined as one that hitting the different position of a
target causes the same effect, whereas the heteroge-
neous target is allowed to differ. Hence, for homoge-
neous target, there is no need to discuss the position
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being hit. Obviously, in many cases, it is unrealistic
to assume that the target is homogeneous. For exam-
ple, the effect caused by hitting the leg or hitting the
heart of a combatant is completely different. There-
fore, researching on heterogeneous target is needed.
This paper is motivated by this need.

In this paper, heterogeneous target is considered
by explicitly decomposing the whole target region into
deadly region and non-deadly region. Figure 1 shows
a heterogeneous target region R with deadly region R1
and non-deadly regionR2. For the first time we obtain
the probability density function of the time to kill for
heterogeneous target. The general solution is obtained
in quadrature form and specific solutions are derived
for some particular cases. An example with particular
heterogeneous target is given.

The organization of this paper is as follows. In
Section 2 we present the notations and the assump-
tions. Then, in Section 3, the probability model is de-
veloped. We derive the probability density function
of the time to kill for heterogeneous target. In Sec-
tion 4 we present an example. In Section 5, we draw
some concluding remarks. The proofs of Lemma 2
and Lemma 3 can be seen in appendix A and appendix
B, respectively.

2 Assumptions and Notations
The basic ingredient in the general solution of a com-
bat model is based on each marksman firing at a pas-
sive target (one that does not return fire) [17]. Hence,
researching on stochastic duel problem with heteroge-
neous target, we begin with marksman problem.

Two duelists are denoted by A and B. In order
to develop an expression for the probability density
function of the time forA to killB, we assumeA fires
at a passive target B. Furthermore, we consider B
to be a heterogeneous target. And we decompose the
whole target region R into deadly region R1 and non-
deadly regionR2 as shown in Figure 1. The following
relations hold:

R1 ∪R2 = R,R1 ∩R2 = Ø.

Suppose the duel satisfies all the basic assumptions:
(a) B is a hidden target.
(b) After B being detected, A fires at B until B

is killed.
(c) As firing time (that is, the time between

rounds) is a random variable (denoted as η ) with a
known probability density, fη(t) . And each firing
time is selected from fη(t), independently and at ran-
dom.

(d) If A hits deadly region R1, B is killed imme-
diately.

Figure 1: An illustration of deadly region and non-
deadly region of the target

(e) IfA doesn’t hit deadly regionR1, the required
number of hitting non-deadly region R2 to kill B is a
discrete random variable (denoted as D) taking possi-
ble values 2, 3, 4, · · ·.

(f) Each time A fires, he has a fixed probability
of hittingR1, and has a fixed probability of hittingR2.
Then each time A fires, he hits B with probability p,
where p = p1 + p2. We denote the probability that B
is not hit as q, where q = 1− p.

Other notations which we will use are as follows.
ξ: The time for A to detect B. It is a positive

random variable.
fξ(s): The probability density function (pdf) of

ξ.
η: firing time. The pdf of η is fη(t) (see above

(c)). It is a positive random variable.
η1: The 1st firing time. It is measured from B

being detected.
ηi: The ith firing time (i = 2, 3, · · ·). From

assumption (c), η1, η2, η3, · · · , are independent and
identically distributed with pdf fη(t).

Φη(u): The characteristic function of η.
T : The time for A to kill B, measured from the

beginning of As searching B.
N : The firing round times of A until killing B.

It is a discrete random variable taking possible values
1, 2, 3, · · ·. And it is realistic to assume that ξ and N
are independent.

D: See above (e).
fT (t): The pdf of T . It is a positive random vari-

able.
Φ(u): The Fourier transform of f(x). That is,

Φ(u) =

∫ ∞

−∞
f(t)eiutdt.

f (n)(x): The n multiple convolution of the posi-

WSEAS TRANSACTIONS on MATHEMATICS Jianjun Li, Liwei Liu, Tao Jiang

E-ISSN: 2224-2880 37 Volume 14, 2015



tive density function f(x) itself. That is,

f (n)(x) = f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
n

(x),

f ∗ f(x) =
∫ x

0
f(x− y)f(y)dy, x ≥ 0.

3 The Model
Consider the joint probability density function of ξ
and T . We have

fξT (s, t) = fξ(s)fT |ξ(t|s), (1)

where fT |ξ(t|s) is the conditional density function of
T given ξ = s and fξ(s) > 0.

The probability, fT |ξ(t|s)dt, thatA takes between
time t and t+ dt to kill B given ξ = s is

P (t ≤ T < t+ dt|ξ = s)

= P (t ≤ T < t+ dt,
∞
∪
d=2

(D = d),
∞
∪
n=1

(N = n)|ξ = s)

=
∞∑
d=2

P (D = d)P (t ≤ T < t+ dt,

∞
∪
n=1

(N = n)|ξ = s,D = d)

=
∞∑
d=2

P (D = d)

×
∞∑
n=1

P (t ≤ T < t+ dt,N = n|ξ = s,D = d)

=
∞∑
d=2

P (D = d)

×
∞∑
n=1

[P (N = n|ξ = s,D = d)

×P (t ≤ T < t+ dt|ξ = s,D = d,N = n)].
(2)

Since the density function of As firing time is fη(t),
measured from B being detected, the time at which
the nth round is fired is the sum of n independent se-
lections from fη(t), so we have

P (t ≤ T < t+ dt|ξ = s,D = d,N = n)
= P (t− s ≤ T − s < t− s+ dt|ξ = s,

D = d,N = n)

= f
(n)

η (t− s)dt, t ≥ s.
(3)

Also,

P (N = n|ξ = s,D = d)

= P (N = n|D = d)

= P [(hit R1 onthe n thround and

A does not hitR2), N = n|D = d]

+P [(the number of hitting R2 is d− 1

on the first n− 1 rounds and hit R2 on the

nth round and A does not hit R1),

N = n|D = d]

+
d−1∑
j=1

P [(the number of hitting R2 is j

on the first n− 1 rounds and hit R1

on the n th round), N = n|D = d],

(4)

where

P

[
(
hit R1 on the nth round
and A does not hit R2

), N = n|D = d

]

= qn−1p1, n = 1, 2, 3, · · · . (5)

P [(the number of hitting R2 is d− 1

on the first d− 1 n− 1 roundsandhit R2

on the n th round and A does not hit R1),

N = n|D = d]

=

(
n− 1
d− 1

)
pd−1
2 qn−dp2,

n = d, d+ 1, d+ 2, · · · . (6)

P [(the number of hitting R2 is j

on the first n− 1 rounds and hit R1

on the n th round), N = n|D = d]

=

(
n− 1
j

)
pj2q

n−1−jp1

j = 1, 2, 3, · · · , d− 1,
n = j + 1, j + 2, j + 3, · · · . (7)

From (3), (4), (5), (6) and (7) we obtain

∞∑
n=1

P (t ≤ T < t+ dt,N = n|ξ = s,D = d)

=
∞∑
n=1

P (N = n|ξ = s,D = d)P (t ≤

T < t+ dt|ξ = s,D = d,N = n)

=
∞∑
n=1

qn−1p1f
(n)

η (t− s)dt

+
∞∑
n=d

(
n− 1
d− 1

)
pd−1
2 qn−dp2f

(n)

η (t− s)dt

+
d−1∑
j=1

∞∑
n=j+1

(
n−1
j

)
pj2q

n−1−jp1f
(n)

η (t−s)dt

t ≥ s. (8)
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Let

ϕ1(t− s|d) =
∞∑
n=1

qn−1p1f
(n)

η (t− s), (9)

ϕ2(t− s|d)

=
∞∑
n=d

(
n−1
d−1

)
pd−12 qn−dp2f

(n)

η (t−s), (10)

ϕ3,j(t− s|d)

=
∞∑

n=j+1

(
n− 1
j

)
pj2q

n−1−jp1f
(n)

η (t−s),

j = 1, 2, 3, · · · , d− 1. (11)

Then from (8)

∞∑
n=1

P (t ≤ T < t+dt,N=n|ξ=s,D=d)

= ϕ1(t− s|d)dt+ ϕ2(t− s|d)dt

+
d−1∑
j=1

ϕ3,j(t− s|d)dt.

(12)
Thus, from (2) and (12) we have

P (t ≤ T < t+ dt|ξ = s)

=
∞∑
d=2

P (D = d)[ϕ1(t−s|d)dt+ ϕ2(t−s|d)dt

+
d−1∑
j=1

ϕ3,j(t− s|d)dt].

That is

fT |ξ(t|s)
=

∞∑
d=2

P (D=d)[ϕ1(t−s|d) + ϕ2(t−s|d)

+
d−1∑
j=1

ϕ3,j(t− s|d)], t ≥ s.

(13)
In order to obtain an expression of relatively easy
computation for the pdf of T , we shall establish sev-
eral lemmas.

Lemma 1 Given ξ = s andD = d, the Fourier trans-
form of ϕ1(t− s|d) is

Φ1(u|d) =
p1Φη(u)

1− qΦη(u)
. (14)

Proof: Let τ = t− s, then, from (9)

ϕ1(τ |d) =
∞∑
n=1

qn−1p1f
(n)

η (τ). (15)

From the convolution property of Fourier transform,
(15) may be transformed into

Φ1(u|d) =
∞∑
n=1

qn−1p1[Φη(u)]
n,

also, |qΦη(u)| < 1. Hence,

Φ1(u|d) =
p1Φη(u)

1− qΦη(u)
.

⊓⊔

Lemma 2 Given ξ = s andD = d, the Fourier trans-
form of ϕ2(t− s|d) is

Φ2(u|d) = [
p2Φη(u)

1− qΦη(u)
]d. (16)

The proof can be seen in Appendix A.

Lemma 3 Given ξ = s andD = d, the Fourier trans-
form of ϕ3,j(t− s|d) is

Φ3,j(u|d) = p1p
j
2[

Φη(u)
1−qΦη(u)

]j+1

j = 1, 2, 3, · · · , d− 1.
(17)

Theorem 4 The characteristic function and the den-
sity function for the time for A to kill his heteroge-
neous target B are, respectively,

ΦT (u) = Φξ(u)

{
p1Φη(u)

1− qΦη(u)

+
+∞∑
d=2

P (D = d)[
p2Φη(u)

1− qΦη(u)
]
d

+
+∞∑
d=2

P (D=d)
d−1∑
j=1

p1p
j
2[

Φη(u)

1−qΦη(u)
]
j+1}

, (18)

fT (t) =
1

2π

+∞∑
d=2

P (D = d)

∫ +∞

−∞
e−iutΦξ(u){

p1Φη(u)

1− qΦη(u)
+ [

p2Φη(u)

1− qΦη(u)
]d

+
d−1∑
j=1

p1p
j
2[

Φη(u)

1− qΦη(u)
]j+1

}
du, t ≥ 0. (19)

Proof: Since,

fT (t) =

∞∫
−∞

fξT (s, t)ds =

∞∫
−∞

fξ(s)fT |ξ(t|s)ds,

(20)
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substituting (13) into (20), we have

fT (t) =
∞∑
d=2

P (D = d)
∞∫

−∞
fξ(s)[ϕ1(t− s|d)

+ϕ2(t− s|d) +
d−1∑
j=1

ϕ3,j(t− s|d)]ds.

(21)
Notice that ϕ1(t− s|d), ϕ2(t− s|d), and ϕ3,j(t− s|d)
are the function of single variable t− s. We have∫ ∞

−∞
fξ(s)ϕ1(t− s|d)ds = fξ ∗ ϕ1(t),∫ ∞

−∞
fξ(s)ϕ2(t− s|d)ds = fξ ∗ ϕ2(t),

and ∫ ∞

−∞
fξ(s)ϕ3,j(t− s|d)ds = fξ ∗ ϕ3,j(t).

Then, taking Fourier transform on both sides of (21),
from lemma 1, lemma2, lemma3, and the convolution
property of Fourier transform, (18) is followed. Also,

fT (t) =
1

2π

∫ +∞

−∞
ΦT (u)e

−iutdu, (22)

substituting (18) into (22), (19) follows and the theo-
rem is proved.

Corollary 5 If p2 = 0, i.e. p1 + q = 1, the following
results can be derived,

ΦT (u) =
p1Φξ(u)Φη(u)

1− qΦη(u)
, (23)

and

fT (t) =
1

2π

∫ +∞

−∞
e−iut

p1Φξ(u)Φη(u)

1− qΦη(u)
du, t ≥ 0.

(24)

If p2 = 0, it is implied that the target B can be re-
garded as homogeneous, and B will be killed immedi-
ately as long as he is hit. In this particular case, (23)
and (24) are the general solutions for the characteristic
function and the density function of the time to kill.

Corollary 6 If p1 = 0, i.e. p2 + q = 1, the following
results can be derived,

ΦT (u) =
+∞∑
d=2

P (D = d)Φξ(u)[
p2Φη(u)

1− qΦη(u)
]
d

(25)

and

fT (t) =
1

2π

+∞∑
d=2

P (D=d)

+∞∫
−∞

e−iutΦξ(u)

[
p2Φη(u)

1− qΦη(u)
]ddu, t ≥ 0. (26)

If p1 = 0, it is implied that the target B can be re-
garded as homogeneous too, but the required times of
hittingR2 to killB are a discrete random variable tak-
ing possible values 2, 3, 4, · · ·. In this case, the general
solutions for the characteristic function and the den-
sity function of the time to kill are (25) and (26).

Corollary 7 If P (D = 2) = 1, the following results
can be derived,

ΦT (u) = Φξ(u)

{
p1Φη(u)

1−qΦη(u)
+[

p2Φη(u)

1−qΦη(u)
]2

+p1p2[
Φη(u)

1− qΦη(u)
]2
}
, (27)

and for t ≥ 0,

fT (t) =
1

2π

∫ +∞

−∞
e−iutΦξ(u){

p1Φη(u)

1−qΦη(u)

+[
p2Φη(u)

1−qΦη(u)
]2+p1p2[

Φη(u)

1−qΦη(u)
]2}du. (28)

When P (D = 2) = 1, we are told that the target B
may be heterogeneous, and that B will be killed as
long as A hits R1, or if A doesn’t hit R1, B will be
killed when R2 is hit twice. (27) and (28) are the so-
lutions for this particular case.

4 Example
Suppose that the random variables ξ and η obey expo-
nential distribution. That is

fξ(s) =

{
λe−λs s ≥ 0,

0 s < 0,

fη(r) =

{
βe−βr r ≥ 0,

0 r < 0

where λ and β are positive constant. The characteris-
tic functions of ξ and η are, respectively,

Φξ(u) =
λ

λ− iu
, Φη(u) =

β

β − iu
.

Furthermore, assume that P (D = 2) = 1. We will
calculate the characteristic function and the density
function of the random variable T by corollary 7.
From (27), we have

ΦT (u) =
λ

λ− iu

{
p1β

(1− q)β − iu

+[
p2β

(1− q)β − iu
]2 + p1p2[

β

(1− q)β − iu
]2
}

=
λ

λ− iu

[
p1β

pβ − iu
+ (

p2β

pβ − iu
)2
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+p1p2(
β

pβ − iu
)2
]
, (29)

Using (28) we have

fT (t) =
1

2π

+∞∫
−∞

e−iut
λ

λ− iu

[
p1β

pβ − iu

+(
p2β

pβ − iu
)2 + p1p2(

β

pβ − iu
)2
]
du

=
1

2π

+∞∫
−∞

e−iut
iλ

u+ iλ
[
ip1β

u+ ipβ

+(
ip2β

u+ ipβ
)2 + p1p2(

iβ

u+ ipβ
)2]du. (30)

When λ ̸= pβ, applying the residue theorem we have

fT (t)

=
λp1βe

−pβt(1− e−(λ−pβ)t)

λ− pβ

+
λp22β

2

(λ− pβ)2
{e−λt + [(λ− pβ)t− 1]e−pβt}

+
λp1p2β

2

(λ− pβ)2
{e−λt + [(λ− pβ)t− 1]e−pβt}

=
p1λβ

λ− pβ
e−pβt(1− e−(λ−pβ)t)

+
pp2λβ

2

(λ− pβ)2
e−pβt[e−(λ−pβ)t + (λ− pβ)t− 1].

(31)

When λ = pβ, from (30) it follows that

fT (t)

=
1

2π

+∞∫
−∞

e−iut[
−p1λβ

(u+ ipβ)2
+

−ip2λβ
(u+ ipβ)3

+
−ip1p2λβ
(u+ ipβ)3

]du.

Applying the residue theorem we have

fT (t)

=
1

2π

+∞∫
−∞

e−iut[
−p1λβ

(u+ ipβ)2
+

−ip2λβ
(u+ ipβ)3

+
−ip1p2λβ
(u+ ipβ)3

]du. (32)

From (31) and (32) we thus obtain for t ≥ 0,

fT (t) =



p1λβ
λ−pβ e

−pβt(1− e−(λ−pβ)t)

+
pp2λβ

2

(λ−pβ)2 e
−pβt

×[e−(λ−pβ)t + (λ− pβ)t− 1]
if λ ̸= pβ

p1λβte
−pβt + 1

2pp2λβ
2t2e−pβt

if λ = pβ

(33)

It is readily demonstrated that fT (t) has the following
properties:

(i): fT (t) ≥ 0,

(ii):
∞∫

−∞
fT (t)dt = 1.

Proof of property (i). Let θ = λ− pβ. When θ = 0,
the result is obvious.
When θ ̸= 0 , from (33) we have

fT (t) =
p1λβ

θ
e−pβt(1− e−θt)

+
pp2λβ

2

θ2
e−pβt(e−θt + θt− 1).

Let

g1(t) =
1

θ
(1− e−θt), t ≥ 0.

When θ > 0 and 1− e−θt ≥ 0, then g1(t) ≥ 0. When
θ < 0, 1 − e−θt ≤ 0, it also has g1(t) ≥ 0. Hence,
when θ ̸= 0 and t ≥ 0 , we have g1(t) ≥ 0. Let
g2(t) = e−θt + θt− 1, t ≥ 0. Since

dg2(t)

dt
= −θe−θt + θ,

letting dg2(t)
dt = 0, we have the solution t = 0. Also,

d2g2(t)
dt2

= θ2e−θt > 0. This implies that g2(t) is
a strictly lower convex function and that t = 0 is
the minimum point. So we have g2(t) ≥ g2(0), i.e.
g2(t) ≥ 0 . Since g1(t) ≥ 0 and g2(t) ≥ 0, the result
follows immediately.

5 Conclusion
The concepts of homogeneous and heterogeneous tar-
get are proposed in this study. In many cases, it is un-
realistic to assume that a target is homogeneous. Al-
though much work has been done for the stochastic
duel problem, the study on heterogeneous target was
not considered in literature. Some important statistics
such as the mean time to kill the target, or the win-
ning probabilities for the both sides can be obtained
by making use of the pdf of the time to kill. Therefore,
this paper shows how to find the pdf of the time to kill
for heterogeneous target. This is achieved by using
renewal theoretic approach. The general solution is
obtained in quadrature form and specific solutions are
derived for some particular cases. It is illustrated by
an example with particular heterogeneous target.

Appendix A
Proof of Lemma 2
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Because η1, η2, η3, · · · , are independent and iden-
tically distributed with pdf fη(t) , the stochastic pro-
cess of the number of shots is a renewal process.
Using renewal equation we will show that lemma 6
holds.

Given ξ = s and D = d, let Wn|ξ=s,D=d be the
waiting time until the nth shoot. Obviously,

Wn|ξ=s,D=d = s+
n∑
i=1

ηi.

Let

f0n(t|s, d)dt

= P

(
t ≤Wn|ξ=s,D=d < t+ dt

and A doesn′t hit R on the n rounds

)
= qnf (n)η (t− s)dt, n = 1, 2, · · · ,

and

f jn(t|s, d)dt

= P


t ≤Wn|ξ=s,D=d < t+ dt
and the number of hitting R2

is j on the n rounds and
Adoesn′t hit R on the rest
of rounds


=

(
n
j

)
pj2q

n−jf (n)η (t− s)dt

j = 1, 2, · · · , d− 1, n = j, j + 1, · · · ,

and

fdn(t|s, d)dt

= P



t ≤Wn|ξ=s,D=d < t+ dt and
the number of hitting R2

is d− 1 on the first n − 1
rounds and hit R2 on the
nth round then B is killed

and A doesn′t hit R
on the rest of rounds


=

(
n− 1
d− 1

)
pd2q

n−df (n)η (t− s)dt,

n = d, d+ 1, · · · .

Then it holds that

f0n(t|s, d) = qnf (n)η (t− s), n = 1, 2, · · · ,

f jn(t|s, d) =
(
n
j

)
pj2q

n−jf (n)η (t− s),

j = 1, 2, · · · , d− 1, n = j, j + 1, · · · ,

fdn(t|s, d) =
(
n− 1
d− 1

)
pd2q

n−df (n)η (t− s),

n = d, d+ 1, · · · .

Notice that

f jn(t|s, d), j = 0, 1, 2, · · · , d,

are the function of single variable t − s. Denote
f jn(t|s, d) by f jn(t− s|d), i.e.,

f jn(t− s|d) = f jn(t|s, d), j = 0, 1, 2, · · · , d.

These functions

f jn(t− s|d), j = 0, 1, 2, · · · , d

satisfy the following renewal equations.

1) f0n(t−s|d) = q
t−s∫
0
fη(y)f

0
n−1(t−s−y|d)dy,

with t − s ≥ 0 ,n = 2, 3, 4, · · · , wheref01 (t − s|d) =
qfη(t− s).

2) f jn(t − s|d) = p2
t−s∫
0
fη(y)f

j−1
n−1(t − s −

y|d)dy + q
t−s∫
0
fη(y)f

j
n−1(t − s − y|d)dy, t − s ≥

0, j = 1, 2, · · · , d − 1, n = j, j + 1, · · · , where
f11 (t− s|d) = p2fη(t− s).

3) fdn(t−s|d) = p2
t−s∫
0
fη(y)f

d−1
n−1(t−s−y|d)dy,

n = d, d+ 1, · · · .
Furthermore, let

f0(t− s|d) =
+∞∑
n=1

f0n(t− s|d),

f1(t− s|d) =
+∞∑
n=1

f1n(t− s|d),

f j(t− s|d) =
+∞∑
n=j

f jn(t− s|d), 2 ≤ j ≤ d− 1,

fd(t− s|d) =
+∞∑
n=d

fdn(t− s|d).

Using the renewal equations we have, for t ≥ s,

f0(t− s|d)

= f01 (t− s|d) +
+∞∑
n=2

f0n(t− s|d)

= qfη(t− s)

+q

∫ t−s

0
fη(y)[

+∞∑
n=2

f0n−1(t− s− y|d)]dy
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= qfη(t− s)

+q

∫ t−s

0
fη(y)f

0(t− s− y|d)dy; (34)

f1(t− s|d)

= f11 (t− s|d) +
+∞∑
n=2

f1n(t− s|d)

= p2fη(t− s)

+p2

∫ t−s

0
fη(y)

+∞∑
n=2

f0n−1(t− s− y|d)dy

+q

∫ t−s

0
fη(y)

+∞∑
n=2

f1n−1(t− s− y|d)dy

= p2fη(t− s)

+p2

∫ t−s

0
fη(y)f

0(t− s− y|d)dy

+q

∫ t−s

0
fη(y)f

1(t− s− y|d)dy; (35)

f j(t− s|d)

= f jj (t− s|d) +
+∞∑
n=2

f jn(t− s|d)

= pj2f
(j)
η (t− s)

+
+∞∑

n=j+1

[p2

∫ t−s

0
fη(y)f

j−1
n−1(t− s− y|d)dy

+q

∫ t−s

0
fη(y)f

j
n−1(t− s− y|d)dy]

= pj2f
(j)
η (t− s)

+p2

∫ t−s

0
fη(y)

+∞∑
n=j+1

f j−1
n−1(t− s− y|d)dy

+q

∫ t−s

0
fη(y)

+∞∑
n=j+1

f jn−1(t− s− y|d)dy

= pj2f
(j)
η (t− s)

+p2

∫ t−s

0
fη(y)f

j−1(t− s− y|d)dy

−p2
∫ t−s

0
fη(y)f

j−1
j−1 (t− s− y|d)dy

+q

∫ t−s

0
fη(y)f

j(t− s− y|d)dy

= p2

∫ t−s

0
fη(y)f

j−1(t− s− y|d)dy

+q

∫ t−s

0
fη(y)f

j(t− s− y|d)dy,
t ≥ s, 2 ≤ j ≤ d− 1, (36)

where

p2

∫ t−s

0
fη(y)f

j−1
j−1 (t− s− y|d)dy

= p2

∫ t−s

0
fη(y)p

j−1
2 f (j−1)

η (t− s− y)dy

= pj2f
(j)
η (t− s),

and

fd(t− s|d)

= p2

∫ t−s

0
fη(y)

+∞∑
n=d

fd−1
n−1(t− s− y|d)dy

= p2

∫ t−s

0
fη(y)f

d−1(t− s− y|d)dy. (37)

We emphasize that ϕ2(t − s|d) = fd(t − s|d).
Taking Fourier transform on both sides of (34), (35),
(36), and (37), applying the property of convolution
we obtain

Φ0(u|d) = qΦη(u) + qΦη(u)Φ
0(u|d), (38)

Φ1(u|d) = p2Φη(u) + p2Φη(u)Φ
0(u|d)

+qΦη(u)Φ
1(u|d), (39)

Φj(u|d) = p2Φη(u)Φ
j−1(u|d)+qΦη(u)Φj(u|d),

2 ≤ j ≤ d− 1, (40)

Φd(u|d) = p2Φη(u)Φ
d−1(u|d), (41)

where the Fourier transform of f j(t − s|d), j =
0, 1, 2, · · · , d is denoted by Φj(u|d).

From (38),(39),and (40) we derive

Φ0(u|d) =
qΦη(u)

1− qΦη(u)
, (42)

Φ1(u|d) =
p2Φη(u)[1 + Φ0(u|d)]

1− qΦη(u)
, (43)

Φj(u|d) =
p2Φη(u)Φ

j−1(u|d)]
1− qΦη(u)

, 2 ≤ j ≤ d−1 (44)

Substituting (42) into (43) we have

Φ1(u|d) =
p2Φη(u)

[1− qΦη(u)]
2 . (45)

Substituting (45) into (44) we have

Φ2(u|d) =
[p2Φη(u)]

2

[1− qΦη(u)]
3 .

In this way, we obtain

Φd−1(u|d) =
[p2Φη(u)]

d−1

[1− qΦη(u)]
d
. (46)
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Substituting (46) into (41) we derive

Φd(u|d) = [
p2Φη(u)

1− qΦη(u)
]d. (47)

Since ϕ2(t−s|d) = fd(t−s|d) and the Fourier trans-
form of fd(t− s|d) is Φd(u|d), we have

Φ2(u|d) = [
p2Φη(u)

1− qΦη(u)
]d,

which proves the Lemma 2.

Appendix B
Proof of Lemma 3

The proof of Lemma 3 will be constructed along
the same lines as that given above for Lemma 2. In
this appendix, there are some notations that have ap-
peared in appendix A, but they may have distinct con-
tent.

Given ξ = s and D = d, let Wn|ξ=s,D=d be the
waiting time until the nth shoot. Obviously,

Wn|ξ=s,D=d = s+
n∑
i=1

ηi.

Let

f0n(t|s, d)dt

= P

(
t ≤Wn|ξ=s,D=d < t+ dt

and A doesn′t hit R on the n rounds

)
= qnf (n)η (t− s)dt, n = 1, 2, · · · ,

fkn(t|s, d)dt

= P


t ≤Wn|ξ=s,D=d < t+ dt
and the number of hitting R2

is k on the n rounds and
Adoesn′t hit R on the rest
of rounds


=

(
n
k

)
pk2q

n−kf (n)η (t− s)dt

k = 1, 2, · · · j, n = k, k + 1, k + 2 · · · ,

f j+1
n (t|s, d)dt

= P



t ≤Wn|ξ=s,D=d < t+ dt and
the number of hitting R2

is j on the first n − 1
rounds and hit R2 on the
nth round then B is killed

and A doesn′t hit R
on the rest of rounds



=

(
n− 1
j

)
pj2q

n−j−1p1f
(n)
η (t− s)dt,

n = j + 1, j + 2, · · · .

Then

f0n(t|s, d) = qnf (n)η (t− s), n = 1, 2, · · · ,

fkn(t|s, d) =
(
n
j

)
pk2q

n−kf (n)η (t− s),

k = 1, 2, · · · , j, n = k, k + 1, · · · ,

f j+1
n (t|s, d) =

(
n− 1
j

)
pj2q

n−1−jp1f
(n)
η (t− s),

n = j + 1, j + 2, · · · .
Notice that

fkn(t|s, d), k = 0, 1, 2, · · · , j + 1,

are the function of single variable t − s. Denote
fkn(t|s, d) by fkn(t− s|d), i.e.,

fkn(t− s|d) = fkn(t|s, d), k = 0, 1, 2, · · · , j + 1.

The functions fkn(t− s|d), k = 0, 1, 2, · · · , j +1, sat-
isfy the following renewal equations.

1) f0n(t−s|d) = q
t−s∫
0
fη(y)f

0
n−1(t−s−y|d)dy,

t − s ≥ 0, n = 2, 3, 4, · · · , where f01 (t − s|d) =
qfη(t− s).

2) fkn(t − s|d) = p2
t−s∫
0
fη(y)f

k−1
n−1(t − s −

y|d)dy + q
t−s∫
0
fη(y)f

k
n−1(t − s − y|d)dy,t − s ≥ 0,

k = 1, 2, · · · , j, n = k, k+1, · · ·, where f11 (t−s|d) =
p2fη(t− s).

3) f j+1
n (t − s|d) = p1

t−s∫
0
fη(y)f

j
n−1(t − s −

y|d)dy, n = j + 1, j + 2, · · ·.
Furthermore, let

f0(t− s|d) =
+∞∑
n=1

f0n(t− s|d),

f1(t− s|d) =
+∞∑
n=1

f1n(t− s|d),

fk(t− s|d) =
+∞∑
n=k

fkn(t− s|d), k = 2, 3, · · · , j,

f j+1(t− s|d) =
+∞∑

n=j+1

f j+1
n (t− s|d).
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Using the renewal equations we have

f0(t− s|d)

= f01 (t− s|d) +
+∞∑
n=2

f0n(t− s|d)

= qfη(t− s) + q

∫ t−s

0
fη(y)

[
+∞∑
n=2

f0n−1(t− s− y|d)]dy

= qfη(t− s)

+q

t−s∫
0

fη(y)f
0(t− s− y|d)dy; (48)

f1(t− s|d)

= f11 (t− s|d) +
+∞∑
n=2

f1n(t− s|d)

= p2fη(t− s)

+p2

∫ t−s

0
fη(y)

+∞∑
n=2

f0n−1(t− s− y|d)dy

+q

∫ t−s

0
fη(y)

+∞∑
n=2

f1n−1(t− s− y|d)dy

= p2fη(t− s)

+p2

∫ t−s

0
fη(y)f

0(t− s− y|d)dy

+q

∫ t−s

0
fη(y)f

1(t− s− y|d)dy; (49)

fk(t− s|d)

= fkk (t− s|d) +
+∞∑

n=k+1

fkn(t− s|d)

= pk2f
(k)
η (t− s)

+
+∞∑

n=k+1

[p2

∫ t−s

0
fη(y)f

k−1
n−1(t− s− y|d)dy

+q

∫ t−s

0
fη(y)f

k
n−1(t− s− y|d)dy]

= pk2f
(k)
η (t− s)

+p2

∫ t−s

0
fη(y)

+∞∑
n=k+1

fk−1
n−1(t− s− y|d)dy

+q

∫ t−s

0
fη(y)

+∞∑
n=k+1

fkn−1(t− s− y|d)dy

= pk2f
(k)
η (t− s)

+p2

∫ t−s

0
fη(y)f

k−1(t− s− y|d)dy

−p2
∫ t−s

0
fη(y)f

k−1
k−1 (t− s− y|d)dy

+q

∫ t−s

0
fη(y)f

k(t− s− y|d)dy

= p2

∫ t−s

0
fη(y)f

k−1(t− s− y|d)dy

+q

∫ t−s

0
fη(y)f

k(t− s− y|d)dy,
t ≥ s, 2 ≤ k ≤ j, (50)

where

p2

∫ t−s

0
fη(y)f

k−1
k−1 (t− s− y|d)dy

= p2

∫ t−s

0
fη(y)p

k−1
2 f (k−1)

η (t− s− y)dy

= pk2f
(k)
η (t− s),

and

f j+1(t− s|d)

= p1

∫ t−s

0
fη(y)

+∞∑
n=j+1

f jn−1(t− s− y|d)dy

= p1

∫ t−s

0
fη(y)f

j(t− s− y|d)dy. (51)

Notice that

ϕ3,j(t− s|d) = f j+1(t− s|d).

Taking Fourier transform on both sides of (48), (49),
(50), and (51), applying the property of convolution
we obtain

Φ0(u|d) = qΦη(u) + qΦη(u)Φ
0(u|d), (52)

Φ1(u|d) = p2Φη(u) + p2Φη(u)Φ
0(u|d)

+qΦη(u)Φ
1(u|d), (53)

Φk(u|d) = p2Φη(u)Φ
k−1(u|d) + qΦη(u)Φ

k(u|d),
2 ≤ k ≤ j, (54)

Φj+1(u|d) = p2Φη(u)Φ
j(u|d), (55)

where the Fourier transform of fk(t − s|d) ,k =
0, 1, 2, · · · , j+1, are denoted by Φk(u|d). From (52),
(53), and (54) we derive

Φ0(u|d) =
qΦη(u)

1− qΦη(u)
, (56)

Φ1(u|d) =
p2Φη(u)[1 + Φ0(u|d)]

1− qΦη(u)
, (57)

Φk(u|d) =
p2Φη(u)Φ

k−1(u|d)]
1− qΦη(u)

, 2 ≤ k ≤ j. (58)
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Substituting (56) into (57) we have

Φ1(u|d) =
p2Φη(u)

[1− qΦη(u)]
2 . (59)

Substituting (59) into (58) we have

Φ2(u|d) =
[p2Φη(u)]

2

[1− qΦη(u)]
3 .

In this way, we obtain

Φj(u|d) =
[p2Φη(u)]

j

[1− qΦη(u)]
j+1 . (60)

Substituting (60) into (55) we derive

Φj+1(u|d) = p1p
j
2[

Φη(u)

1− qΦη(u)
]j+1. (61)

Since ϕ3,j(t − s|d) = f j+1(t − s|d) and the Fourier
transform of f j+1(t− s|d) is Φj+1(u|d), we have

Φ3,j(u|d) = p1p
j
2[

Φη(u)

1− qΦη(u)
]j+1

which is what we want to show.
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